资源类型

期刊论文 496

会议视频 13

年份

2024 1

2023 37

2022 48

2021 47

2020 37

2019 36

2018 37

2017 23

2016 21

2015 22

2014 15

2013 23

2012 9

2011 21

2010 18

2009 21

2008 29

2007 22

2006 7

2005 6

展开 ︾

关键词

碳中和 4

冶金 3

颠覆性技术 3

个人热管理 2

乳液 2

卫星 2

原子力显微镜 2

固体氧化物燃料电池 2

增材制造 2

快速充电 2

数值模拟 2

新材料 2

智能制造 2

材料 2

材料设计 2

/III-V界面 1

2019全球工程前沿 1

2035 1

3D 打印 1

展开 ︾

检索范围:

排序: 展示方式:

Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices

Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 137-142 doi: 10.1007/s11708-018-0532-8

摘要: Si/Ge superlattices are promising thermoelectric materials to convert thermal energy into electric power. The nanoscale thermal transport in Si/Ge superlattices is investigated via molecular dynamics (MD) simulation in this short communication. The impact of Si and Ge interface on the cross-plane thermal conductivity reduction in the Si/Ge superlattices is studied by designing cone-structured interface and aperiodicity between the Si and Ge layers. The temperature difference between the left and right sides of the Si/Ge superlattices is set up for nonequilibrium MD simulation. The spatial distribution of temperature is recorded to examine whether the steady-state has been reached. As a crucial factor to quantify thermal transport, the temporal evolution of heat flux flowing through Si/Ge superlattices is calculated. Compared with the even interface, the cone-structured interface contributes remarkable resistance to the thermal transport, whereas the aperiodic arrangement of Si and Ge layers with unequal thicknesses has a marginal influence on the reduction of effective thermal conductivity. The interface with divergent cone-structure shows the most excellent performance of all the simulated cases, which brings a 33% reduction of the average thermal conductivity to the other Si/Ge superlattices with even, convergent cone-structured interfaces and aperiodic arrangements. The design of divergent cone-structured interface sheds promising light on enhancing the thermoelectric efficiency of Si/Ge based materials.

关键词: thermoelectric material     thermal transport     Si/Gesuperlattics     molecular dynamics (MD)    

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

《能源前沿(英文)》 2022年 第16卷 第3期   页码 460-470 doi: 10.1007/s11708-022-0825-9

摘要: In this paper, a novel liquid metal-based minichannel heat dissipation method was developed for cooling electric devices with high heat flux. A high-performance electromagnetic induction pump driven by rotating permanent magnets is designed to achieve a pressure head of 160 kPa and a flow rate of 3.24 L/min, which could enable the liquid metal to remove the waste heat quickly. The liquid metal-based minichannel thermal management system was established and tested experimentally to investigate the pumping capacity and cooling performance. The results show that the liquid metal cooling system can dissipate heat flux up to 242 W/cm2 with keeping the temperature rise of the heat source below 50°C. It could remarkably enhance the cooling performance by increasing the rotating speed of permanent magnets. Moreover, thermal contact resistance has a critical importance for the heat dissipation capacity. The liquid metal thermal grease is introduced to efficiently reduce the thermal contact resistance (a decrease of about 7.77 × 10−3 °C/W). This paper provides a powerful cooling strategy for thermal management of electric devices with large heat power and high heat flux.

关键词: high heat flux     liquid metal     electromagnetic pump     minichannel heat sink     thermal interface material    

Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0672-8

摘要: Surface roughness and thermal action are of remarkable importance in the lubrication performance of mechanical components, especially in extreme conditions. However, available studies mainly focus on the full-film lubrication conditions without considering temperature rise and real 3D surface roughness due to the complexity of surface topography and temperature characteristics. Moreover, studies on the interfacial thermal behaviors of 3D rough surface lubricated contact in an extended range of working conditions remain limited. In this paper, a deterministic mixed thermal elastohydrodynamic lubrication model considering real 3D surface roughness and thermal effects is proposed. In this model, pressure and temperature are coupled with each other, the computation of elastic deformation is accelerated through the discrete convolution and fast Fourier transform method, the temperature field is calculated with the column sweeping technique, and the semi-system method is introduced to improve convergence and numerical stability under severe conditions. The model is validated by comparing its results with available published numerical and experimental results. The thermal behaviors of the contact interface are studied in a wide range of working conditions. The influences of surface roughness and thermal effect on lubrication performance are revealed. The results show that the proposed model can be used as a powerful analysis tool for lubrication performance and temperature prediction in various heavy-load, high-speed lubricated components over a wide range of lubrication conditions.

关键词: thermal elastohydrodynamic lubrication     surface roughness effect     thermal effect     temperature characteristics     severe conditions    

Coupling evaluation for material removal and thermal control on precision milling machine tools

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 12-12 doi: 10.1007/s11465-021-0668-9

摘要: Machine tools are one of the most representative machining systems in manufacturing. The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing. However, previous research merely regarded the material removal (MR) energy as useful energy consumption and ignored the useful energy consumed by thermal control (TC) for maintaining internal thermal stability and machining accuracy. In pursuit of energy-efficient, high-precision machining, more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC. Hence, the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy. An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage. Furthermore, the heat characteristics are analyzed, which can be adopted to represent machining accuracy. Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool, which overwhelms the energy consumption of MR. The forced cooling mode of TC results in a 7% reduction in cutting energy efficiency. Regression analysis shows that heat dissipation positively contributes 54.1% to machining accuracy, whereas heat generation negatively contributes 45.9%. This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy. It can provide a foundation for energy-efficient, high-precision machining of machine tools.

关键词: machine tools     cutting energy efficiency     thermal stability     machining accuracy     coupling evaluation    

Stress field near circular-arc interface crack tip based on electric saturation concept

Longchao DAI, Xinwei WANG

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 320-325 doi: 10.1007/s11465-009-0042-9

摘要: Within the framework of nonlinear electroelasticity, the anti-plane problem of a circular-arc interfacial crack between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix subjected to a far-field uniform loading is investigated by an electrical strip saturation model, the complex variable method, and the method of analytical continuation. Explicit closed form expressions for the complex potentials in both the matrix and the inclusion, and the stress intensity factor at the crack tip are presented. Comparison with some related solutions based on the linear electroelastic theory shows the validity of the present solutions

关键词: piezoelectric material     arc crack     strip saturation     stress intensity factor    

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size

Yangsu XIE, Bowen ZHU, Jing LIU, Zaoli XU, Xinwei WANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 143-157 doi: 10.1007/s11708-018-0520-z

摘要: To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed.

关键词: thermal reffusivity theory     phonon behavior     structure defects     structural thermal domain (STD) size     2D material     amorphous material    

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 11-26 doi: 10.1007/s11708-009-0009-x

摘要: The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

关键词: metamaterial     nanostructured material     thermal radiative property     radiative energy transfer    

Progress in terahertz nondestructive testing: A review

Shuncong ZHONG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 273-281 doi: 10.1007/s11465-018-0495-9

摘要: Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.

关键词: terahertz pulsed imaging (TPI)     nondestructive testing (NDT)     composite material     thermal barrier coating    

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

Thermal performance of phase change material energy storage floor for active solar water-heating system

Ruolang ZENG, Xin WANG, Wei XIAO, Yinping ZHANG, Qunli ZHANG, Hongfa DI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 185-191 doi: 10.1007/s11708-009-0079-9

摘要: The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the water tank volume or even cancel the tank, a novel structure of an integrated water pipe floor heating system using shape-stabilized phase change materials (SSPCM) for thermal energy storage was developed and experimentally studied in this paper. The thermal performances of the floors with and without the SSPCM were compared under the intermittent heating condition. The results show that the Energy Storage Ratio (ESR) of the SSPCM floor is much higher than that of the non-SSPCM floor; the SSPCM floor heating system can provide stable heat flux and prevent a large attenuation of the floor surface temperature. Also, the SSPCM floor heating system dampens the indoor temperature swing by about 50% and increases the minimum indoor air temperature by 2°C–3°C under experimental conditions. The SSPCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

关键词: phase change material     energy storage ratio     active solar water-heating    

Chromium steel from chromite ore processing residue----A valuable construction material from a waste

Jay N. MEEGODA, Wiwat KAMOLPORNWIJIT

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 159-166 doi: 10.1007/s11783-011-0325-3

摘要: As species we humans generate excessive amounts of waste and hence for sustainability we should explore innovative ways to recover them. The primary objective of this study is to demonstrate an efficient and optimum way to recover chromium and iron from chromite ore processing residues (COPR) for the production of chrome steel and stainless steel. In Hudson County, New Jersey, there are more than two million tons of leftover COPR. Part of COPR was used as fill materials for construction sites, which spread the problem to a larger area. With high solubility along with their toxicity leached chromate from COPR is threatening the environment as well as human health. In this research, COPR was thermally treated to recover iron with chromium by applying techniques used in steel manufacturing. An extensive experimental program was performed using a Thermo-Gravimetric Analyzer (TGA) and bench scale tests to thermally treat the processed chromium contaminated soils with carbon and sand at varying temperatures and under reducing environment. The optimum chemical composition of COPR and additives to be used in the melts were evaluated based upon the thermodynamic properties of the mixture to ensure good phase separation, least amounts of iron and chromium oxides in the slag and minimum variability of final product (steel or iron with chromium). The impact of other oxides on the steel making process was evaluated to minimize the adverse impact on the process. The research demonstrated the feasibility of recovering a valuable construction material (chrome steel) from a waste (COPR).

关键词: chromite ore processing residue     chromium steel     reduction     thermal treatment     beneficial use    

Effect of interface adhesion factor on the bearing capacity of strip footing placed on cohesive soil

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1494-1503 doi: 10.1007/s11709-021-0768-y

摘要: The problem related to bearing capacity of footing either on pure soil or on pure rock mass has been investigated over the years. Currently, no study deals with the bearing capacity of strip footing on a cohesive soil layer overlying rock mass. Therefore, by implementing the lower bound finite element limit analysis in conjunction with the second-order cone programming and the power cone programming, the ultimate bearing capacity of a strip footing located on a cohesive soil overlying rock mass is determined in this study. By considering the different values of interface adhesion factor (αcr) between the cohesive soil and rock mass, the ultimate bearing capacity of strip footing is expressed in terms of influence factor (If) for different values of cohesive soil layer cover ratio (Tcs/B). The failure of cohesive soil is modeled by using Mohr−Coulomb yield criterion, whereas Generalized Hoek−Brown yield criterion is utilized to model the rock mass at failure. The variations ofIf with different magnitudes of αcr are studied by considering the influence of the rock mass strength parameters of beneath rock mass layer. To examine stress distribution at different depths, failure patterns are also plotted.

关键词: bearing capacity     soil-rock interface     Hoek−Brown yield criterion     plasticity     limit analysis    

相变蓄热材料在高超声速飞行器热控系统中的应用

王佩广,刘永绩,王浚

《中国工程科学》 2008年 第10卷 第7期   页码 188-192

摘要:

就高超声速飞行器防热与热控问题,从“相变蓄热材料充当辅助冷源”思路出发,结合不同飞行器的 飞行特点,提出了5 种热控系统方案,即空气循环热控方案、蒸发循环热控方案、液体冷却回路方案、开式蒸发 冷却热控方案、直接式相变蓄热冷却方案;指出了选择合适相变蓄热材料及相变蓄热封装设计是其中的关键 技术,并结合航空航天领域相关技术进行了探讨与分析

关键词: 相变蓄热材料     热控     高超声速飞行器    

Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer

Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 380-391 doi: 10.1007/s11465-015-0365-7

摘要:

The interface wave traveling along the boundary of two materials has been studied for nearly a century. However, experiments, engineering applications, and interface wave applications to the non-destructive inspection of interlaminar composite have developed slowly. In this research, an experiment that applies Stoneley waves (a type of interfacial wave between two solid half-spaces) is implemented to detect the damage in a multilayer structure. The feasibility of this method is also verified. First, the wave velocity and wave structure of Stoneley waves at a perfectly bonded aluminum-steel interface are obtained by solving the Stoneley wave dispersion equation of two elastic half-spaces. Thereafter, an experiment is conducted to measure the Stoneley wave velocity of an aluminum-steel laminated beam and to locate interlaminar cracks by referring to the Stoneley wave velocity and echo wave time. Results indicate that the location error is less than 2%. Therefore, Stoneley waves show great potential as a non-destructive inspection method of a multilayer structure.

关键词: crack localization     interface waves     Stoneley waves     interlaminar damage     multilayer structure    

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0704-4

摘要: Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator (EHA) pump under high-speed and high-pressure conditions. This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump. The model is composed of the lubrication film model, the component dynamic model considering the spinning motion, and the multi-objective optimization model. In this way, the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified. Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4% and 0.8%, respectively, with the textured swash plate compared with the untextured one.

关键词: electro-hydrostatic actuator     axial piston pump     slipper/swash plate interface     multi-objective optimization     surface texture    

标题 作者 时间 类型 操作

Impacts of cone-structured interface and aperiodicity on nanoscale thermal transport in Si/Ge superlattices

Pengfei JI, Yiming RONG, Yuwen ZHANG, Yong TANG

期刊论文

High heat flux thermal management through liquid metal driven with electromagnetic induction pump

期刊论文

Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness

期刊论文

Coupling evaluation for material removal and thermal control on precision milling machine tools

期刊论文

Stress field near circular-arc interface crack tip based on electric saturation concept

Longchao DAI, Xinwei WANG

期刊论文

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size

Yangsu XIE, Bowen ZHU, Jing LIU, Zaoli XU, Xinwei WANG

期刊论文

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

期刊论文

Progress in terahertz nondestructive testing: A review

Shuncong ZHONG

期刊论文

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文

Thermal performance of phase change material energy storage floor for active solar water-heating system

Ruolang ZENG, Xin WANG, Wei XIAO, Yinping ZHANG, Qunli ZHANG, Hongfa DI,

期刊论文

Chromium steel from chromite ore processing residue----A valuable construction material from a waste

Jay N. MEEGODA, Wiwat KAMOLPORNWIJIT

期刊论文

Effect of interface adhesion factor on the bearing capacity of strip footing placed on cohesive soil

期刊论文

相变蓄热材料在高超声速飞行器热控系统中的应用

王佩广,刘永绩,王浚

期刊论文

Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer

Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI

期刊论文

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

期刊论文